
N95- 28774

INTERACTIVE HIGH QUALITY GRID GENERATION

Ning Lu and Peter R. Eiseman

Program Development Corporation

300 Hamilton Avenue, Suite 409

White Plains, New York 10601

ABSTRACT

We generate high quality grids interactively on a computer workstation through opti-

mization for some simple yet commonly encountered geometric shapes.

1. INTRODUCTION

Algebraic and elliptic grid generation are the two most widely used methods for gen-

erating grids. Algebraic grid generation is known for fast interactive grid generation. The

grid smoothness and lack of skewness, however, are usually not assured. On the other

hand, elliptic grid generation can generate smooth grids but the time it takes to generate

them is usually too long for interactive response. It is naturally desirable to combine the

advantages of both methods and to generate high quality grids (ref. 1) fast and efficiently

on a computer workstation. This requires people to strike a proper balance between the

grid generation speed and the grid quality. We have pursued this idea for some simple

yet commonly encountered geometric shapes. Many of them have a symmetry that can be

used. We have been able to obtain high quality grids fast and interactively. Our method

is to analyze each case carefully and to take full advantage of the region symmetry (if any)

so that optimization is needed only for a part of geometric region under consideration.

We have combined various grid generation methods, such as a fast elliptic grid genera-

tion technique (combining the control point form of algebraic grid generation with elliptic

grid generation, ref. 2) and a transfinite interpolation with orthogonal boundary terms, to

achieve an optimization for each individual case. After such an optimization, we have been

able to generate excellent single- and multi-block grids quickly. This achievement enables

us to generate certain single- and multi-block grids interactively with reasonable response

even on modestly powered workstations.
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2. GRID WITHIN A RHIOMBUS

A simple transfinite interpolation (TFI) will not generate an orthogonal grid in general.

A more general TFI with boundary derivative terms can improve grid orthogonality. In

certain cases, grid orthogonality can be achieved along edges of a face grid or on surfaces

of a volume grid. This, in general, requires a careful analysis for each geometry region

encountered. In this section, we present an example of carrying out such a detailed analysis.

We consider a surface grid bounded within a quadrilateral. Since each of four boundary

edges is a straight line, a bicubicaily blended interpolation formula (i.e., with derivative

information) can be used,

r(u,v) = BT(_t) _S_ B(v) ,

where S is a 4 × 4 matrix

(1)

r(0,0) r(0, 1) r,,(0, 0) rv(0, 1) )

r(1,0) r(1,1) r,,(1,0) r,(1,1) (2)
_S= r_(O,O) r_(O,1) r_(O,O) r_.(0,1) '

r=(1,0) r=(1,1) r_.(1,0) r_.(1,1)

and t3 is a 4-component vector

Bl(u)\ (1-3u 2+2u 3)
B(u) = B2(u) | = 3u2 - 2ua (3)

B3(u) ] 2u + u3
B4(u)/ - u + u 3

(1), u and v are parametric variables. The parametric region of 0 _< u < 1,In Eq.

0 < v < 1 corresponds to the area within the quadrilateral. In Eq. (2), r(0,0), r(1,0),

r(0,1), and r(1,1) are four corners of the quadrilateral (i.e., the surface grid), four r,,'s

are partial derivatives with respect to the variable u at four corners, four rv's are partial

derivatives with respect to the variable v at four corners, and r_,.'s are second-order mixed

derivatives ('also called twists) at four corners. In Eq. (3), the blending functions Bj(u)

have the properties: Bl(u) + B2(u) = 1, Bj(O) = 8jl, Bj(1) = _fj2, dBj(O)/du = '_j3,

dBj(1)/du = _j4.

In grid generation, the positions of four corners r(0,0), r(1,0), r(0,1), and r(1, 1)

are known. However, the values of 8 first-order derivatives and 4 second-order derivatives

axe not given. With a proper choice of these derivatives, one can generate a better grid

than those generated by the simple TFI or, for a quadrilateral, by the simple bilinear

interpolation. The idea is to require that the grid direction at the boundary edges point

to a desired direction. For example, on the v = 0 edge, the grid direction going inside the

quadrilateral can be easily found from Eqs. (1)-(3) to be

r,,(u,0) = Bl(u)r,,(0,0) + B2(u)r,,(1,0) + Ba(u)r,,_(0,0) + B4(u)r,,,,(1,0) . (4)
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_By requiring it to be perpendicular to the v -- 0 edge (a straight llne here), it is possible

.to achieve boundary orthogonality at certain places on the v -- 0 boundary edge.

In the following, we take a rhombus as an example to illustrate how a detailed analysis

can dramatically improve the grid orthogonallty. A rhombus is a special parallelogram with

opposite sides and opposite angles equal but having no right angle. For a rhombus centered

:a_ origin (on the z -- 0 plane), its four corner positions can be written as (see fig. 1)

r(1,1)--r(O,O)=hj, r(1,O)=-r(O, 1)-wi. (5)

r(O, 1)

I) ,

(1,o)

V r(O, O)

Figure 1.--A rhombus centered at origin.

From symmetry considerations, we know (i) that the magnitudes of r,,(O, 0), r_(O, 0),

_r,,(1,1), and r,,(1,1) must be equal, and (ii) that the magnitudes of ru(1,O), r,,(1,0),

• ,,(0, 1), and rv(O, 1) must be equal too. In other words, we have the following relations:

r.(O,O) -- r_(1,1) ----ad , (6a)

r_(O,O)=r,(l,l)--a_', (6b)

ru(1, O) -- r_(O, 1) ----_fl, (6c)

-where

rv(1,O) = rv(O, 1) = _9 , (6d)
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= (wi + hj)l v/_,2 + h2, _ = (-wl + hi)/_/_ + h, (7)

are the unit vectors along the directions of r(1,0) - r(0, 0) and of r(0,1) - r(0, 0), respec-

tively. It is clear that both ct and fl are positive: a > 0 and fl > 0. Also, because of

symmetry, (i) twists r(0,0) and r(1,1) do not have x component whereas twists r(1,0)

and r(0,1) do not have y component, and (ii) the magnitudes of the twists at each pair

of opposite corners are equal but point to opposite directions. Namely, twists satisfy the
relations

,-,,,,(1,1)= -,-,,v(O,O)= a j, (8a)

r..(1,0) = -r..(O,1) = b i. (8b)

Expressions (6) and (8) are the most general form allowed (by the symmetry requirements)

for a rhombus. In other words, the symmetry consideration reduces the number of inde-

pendent first-order derivatives from 8 to 2, and also reduces the number of independent

second-order derivatives from 4 to 2. Now we only need to decide 4 scalar quantities: or,

fl, a, and b. For the rhombus shown in fig. 1, Eq. (4) reduces to

r_(u,0) = [(_Bl(u) + flB2(u)]_, - aBa(u) j + bB4(u) i . (9)

Without loss of generality, we assume in the following discussion that h > w. When

h > w, the angle between the two unit vectors fi and _r, which is the internal angle at

corner r(0,0), is less than 90 °, since _. 6 = (h 2 - w2)/(h 2 + w 2) > 0. To determine

the 4 quantities or, fl, a, and b, we first consider an (unnormalized) orthogonality function

f(u) = r,,(u, 0).fi, which is a function (third-order polynomial) of the parametric variable u.

Its value at the two ends r(0, 0) and r(1, 0) of the v = 0 edge is positive: f(0) = a_- h > 0

and f(1) = fl_" • fi > 0. We want to force the grid to be orthogonal at the middle of

the v = 0 edge (but not overly doing this enforcement). Specifically, we require that the
1 and that the minimumorthogonality function f(u) reaches its minimum value at u =

value of the orthogonality function is zero (for the interval 0 < u < 1). These two

requirements lead to two conditions for the orthogonality function f(u),

du -0' f(5)=0" (10)

From these two conditions, we can express the twists a and b in terms of the first-order

derivatives ot and fl,

(s_ - fi)(h_ - _)
a = hx/w 2 4- h 2 ' (lla)

b = (s_ - .)(h _ - _)
w_/w 2 + h 2

(llb)
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Eliminating the twists a and b in the orthogonality function f(u) with the help of Eqs.

(11), f(u) becomes

1

f(u) = 2, •a [(_+ Z)(2u- 1)' - (_ - Z)(2u- 1)'] , (12)

1 (for the interval 0 < u < 1) for anywhich indeed reaches its minimum value of 0 at u = _ _ _

positive a and ft.

Next, we ask rv and r,, to be orthogonal at the center of the rhombus r(½, ½) = 0.
1

Due to symmetry, the angle between rv(½,5) and j is always equal to the angle between

ru( 15, ½) and j. Thus, asking r_ and ru to be orthogonal at the center of the rhombus is

equivalent to requiring that r,(½,½), j = r_(_, ½). (-i) and

r,,(_, ½) • i = ru(_,½)-j •

Equation (13) leads to a third relation among the derivatives a, fl, a, and b,

(13)

•.(½,½) h - w (6Jw' + h_ - _ - t_)+ "+___bb+ 3(_ - _)(,_ + h) (14)
4_/w 2 + h 2 16 8x/w 2 + h 2

Substituting Eqs. (11) into Eq. (14), we can eliminate a and b and obtain an expression

relating ot to fl,

(w + 5h)fl + 24wh(h- w)(w 2 + h2) -1/2

a = 5w + h (15)

Now we can still choose the value of/_ as it fits. There is, however, a restriction. In the

case of h > w under discussion, the twists a and b, as determined by Eqs. (11), should not

be negative. Otherwise, the resulting grid will not look nice.

In practice, we find that a vanishing twist at the pair of obtuse angles of the rhombus,

i.e.,

b=0, (16)

is a good choice. This leads to

= 5_

according to Eq. (llb). It follows from Eqs. (15) and (17) that

(17)

h(h-w)

- _w 2 +h 2 , h >w. (18)

Substituting Eqs. (17) and (18) into Eq. (lla), we find that correspondingly

24(h-w)(h2-w2) (19)
a = w2 + h2
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Equations (16)-(19) thus uniquely determine all 12 derivatives in Eq. (1).

Figure 2 shows three rhombuses inside a regular hexagon of side length 2w. Two

rhombuses with a pair of edges parallel to the z-axis can be obtained from the third

rhombus (oriented as in fig. 1) with a simple rotation of +120 ° around the corner r(1,0)

on z = 0 plane. For each rhombus in fig. 2, h = v/'3w and Eqs. (18) and (19) give

= 0.634w and a = 8.785w.

Figure 2.--A three-block grid inside a regular hexagon.

3. OTHER EXAMPLES

When the geometric region for a surface grid is no longer a quadrilateral (as in most

cases), a TFI formula with boundary information terms, i.e., a bicubically blended TFI

(see, for example, ref. 3), should be used to replace Eq. (1). By a careful analysis for

each geometric region or shape under study, one can properly choose the directions and
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magnitudes of boundary derivative terms and thus dramatically improve the grid quality

and smoothness. In this way, a surface grid with much improved grid orthogonality can

be generated. For a volume grid, one can also include boundary derivative terms into the

often-used volume grid FTI formula and thus generate a volume grid with improved grid

orthogonality. We have carried out this approach for some simple yet commonly encoun-

tered geometric shapes besides the rhombus case discussed above in section 2. Besides this

pure algebraic grid generation approach, we have also combined the control point form of

algebraic grid generation with elliptic grid generation (ref. 2). Here we first eUiptically

generate a sparse net of control points and then use the control point form of algebraic grid

generation to generate a much denser grid. As a result, we generate a smooth grid with

less computational time and storage space. This approach also enables us to obtain a high

quality grid in an interactive environment on a computer workstation. We are incorporat-

ing these new grid generation techniques into a software product GridProTM/IGgen from

Program Development Corporation, so that a user will be able to readily generate high

quality grids interactively on a computer workstation. Currently, a collection of boundary

geometries are provided and a user can choose among them. In addition, the user can also

specify the grid type wanted, such as O-type, C-type, H-type, and/or multi-block grids.

The user can also specify the grid density and clustering pattern. Once the user makes

a choice, our software immediately generates high quality grids. In this section we show

some of the grids generated interactively using GridPro/IGgen.

Figure 3 shows a single-block 2D grid for a passage which has a circular extra space.

Due to symmetry, we only need to carry out grid orthogonality optimization for a half, a

quarter, or even one eighth of the grid.

Figure 3.--A single-block 2D grid inside a 2D pipe which has symmetric circular extra

space.
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Figure 4 displays an H-type 2D grid passing around a cylinder whose cross section

looks like a super circle. There are two blocks. One block is the mirror image of the other

block about the horizontal symmetry line. For each block, there exists a vertical symmetry

line. So we only need to do optimization for one quarter of the whole grid.

Figure 4.--A 2-block grid passing around a supercircle-like object.
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Figure 5 shows a single-block volume grid inside one half of a torus. Five surfaces

(except the top surface) are displayed. Symmetry of the geometry shape enables us to

focus on one sheet of the volume grid and do grid orthogonality well. Other sheets can be

obtained by rotations of different angles.

Figure 5.--Half of a single-block volume grid inside a toms.
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Figure 6 shows two pictures of a 7-block volume grid inside a sphere. Because of

symmetry, we only need to perform optimization for one of six side blcks and the center

block.

Figure 6.--Two views of a 7-block volume grid inside a sphere.
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These examples clearly show the smoothness and lack of grid skewness that can be

reliably expected in our new interactive environment.

4. SUMMARY

We have combined several new grid generation methods to obtain high quality grids

in an interactive environment. Grids can be generated reliably, and grid quality is high in

general. Currently, we are developing a grid generation program called GridProTM/IGgen

to take advantage of these new advances in grid generation. Our goal is to generate a range

of high-quality single- and/or multi-block grids interactively on a computer workstation.
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